
Chapter 2

Supervised machine
learning (I)

Supervised machine learning is an important analytical tool for high-
throughput genomic data. Assume that the input data in population
(stochastic) version include aG-dimensional random vector ~X = (x1, · · · ,xG)
as covariates (e.g. the gene expression of G genes) and a random variable
Y that takes values on {1, 2, · · · ,K} as the class label (e.g. whether the
patient is metastatic or not as a K=2 binary case). In a given application,
the observed data contain S samples (patients): D = ((y1, ~x1), · · · , (yS, ~xS))

where (ys, ~xs) ∼ (Y, ~X) for 1 ≤ s ≤ S. Taking genomic applicla-
tions as an example, Y may represent labels for “disease vs control”,
“metastatic vs non-metastatic”, “short patient survival vs long patient
survival”, “drug respondants vs non-respondants” or “multiple disease
subtypes”. X may contain G features of one type or multi-type mixture
of clinical variables, gene expression intensities, miRNA expression, pro-
tein expression, methylation intensities, genotype mutations and many
more. The goal of supervised machine learning is to “learn” from the ob-
served data D to construct a prediction model C(~x|D) ∈ {1, 2, · · · ,K}
when the observed covariates of a future patient ~x is given. In the pop-
ulation (stochastic) version (i.e. pretending that the entire underlying
distribution is known), the overall classification error rate is Pr(Y 6=
C(~X|D)). If a validation set is available with known class labels D(test) =

((y
(test)
1 , ~x

(test)
1 ), · · · , (y(test)

S′ , ~x
(test)
S′ )), the validation error is assessed as[∑S′

s=1 χ
(
y
(test)
s 6= C(~x

(test)
s |D)

)]
/S′, where χ(·) is an indicator func-

tion.
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In Chapter 2.1, we start from an ideal machine learning principle
when the entire underlying data distribution is known. Under this sit-
uation, the optimal solution called Bayes classification rule should be
pursued. In real practice, the underlying distribution is certainly un-
known and is impossible to estimate well in the high-dimensional situ-
ation as previously mentioned in Chapter 1. We will introduce several
popular machine learning methods including logistic regression (Chapter
2.2), linear (quadratic) discriminant analysis (Chapter 2.3), classification
and regression tree (CART) (Chapter 2.4), random forest (Chapter 2.6)
and support vector machines (Chapter 2.7). Understanding formulations
and algorithms behind different methods is only the first step. There
are many other fundamental machine learning concepts to consider when
performing machine learning in a real data set. They will be discussed in
the next chapter.

2.1 Bayes classification rule

From Bayes rule, we have the following formula:

f(Y = k|X) =
f(Y = k)f(X|Y = k)

f(X)
=

f(Y = k)f(X|Y = k)∑K
l=1 f(Y = l)f(X|Y = l)

Let cij be the cost of inaccurately assigning an individual of group i
to group j. We usually assume cij ≥ 0 if i 6= j and cii = 0, 1 ≤ i ≤ K.
Assume that the prior f(Y = k), conditional density f(X|Y = k) and
the cost function are known, the optimal (or Bayes rule) classifier that
minimizes the expected loss is:

C(x) = i if x ∈ Ri

where Ri = {x :
∑

1≤h≤K f(Y = h)f(x|Y = h)chi <
∑

1≤h≤K f(Y =
k)f(x|Y = h)chj ,∀1 ≤ j ≤ K, j 6= i}. In other words, we assign an
observation x to group i if

∑
1≤h≤K f(Y = h)f(X|Y = h)chi is minimized

(i.e. C(x) = arg mini
∑

1≤h≤K f(Y = h)f(X|Y = h)chi).
In the special case that cij = 1 (∀i 6= j) and cii = 0 (1 ≤ i ≤ K), the
classification rule becomes

CBayes(X) = arg min
i

∑
h6=i

f(Y = h)f(X|Y = h) = arg min
i

∑
h 6=i

f(Y = h|X)

= arg min
i

1− f(Y = i|X) = arg max
i
f(Y = i|X)

= arg max
i
f(Y = i)f(X|Y = i).
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One can show that CBayes(X) is optimal in that
CBayes(X) = arg maxC(x) P (Y = C(X)) (See Exercise 1).

Example:
Suppose a disease diagnostic tool gives values from N(3,1) for diseased
patients and N(0, 2) for normal patients (i.e. f(X|Y = 0) ∼ N(0, 2)
and f(X|Y = 1) ∼ N(3, 1). Figure 2.1 shows the density plot of the
two conditional distributions. When the cost of making a type-I and
type-II errors are equivalent and the prior probabilities are the same, the
decision boundary is made at the point x0 = 1.597 where f(X0|Y = 1) =
f(X0|Y = 0). In this case, the resulting sensitivity is 92%, specificity is
87.1% and overall accuracy is 85.4%.
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Figure 2.1: Density plot of conditional distributions of control N(0,2) and
disease N(3,1) and the three Bayes decision thresholds x0, x1 and x2.

If the prevalence of the disease is 10%, f(Y=0)=0.9 and f(Y=1)=0.1.
Consider a cheap diagnostic tool that is meant to be a simple first-line
screen test. We may want to allow smaller cost function c01 for false
positives so that these false positive patients can be followed up by more
expensive and accurate diagnosic tools. For example, we can assigin
c01 = 0.01 and c10 = 1 and the decision boundary will be made at
x1 = 0.613 where f(X1|Y = 1) · 0.1 · 1 = f(X1|Y = 0) · 0.9 · 0.01. Under
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this cost function and prior probability, the resulting best specificity is
as low as 66.8% and the sensitivity is high at 99.2%. On the other hand,
if the diagnostic tool is expensive and accurate, we usually require large
cost function for false positives (so that not to scare normal patients).
If we assigin c01 = 1 and c10 = 0.5, the decision boundary will be made
at x2 = 3.2 where f(X2|Y = 1) · 0.1 · 0.5 = f(X2|Y = 0) · 0.9 · 1. The
resulting specificity is high (98.8%) and the sensitivity is 42.1%. Exercise
2 will request the reader to repeat the analysis of this simple example.
As we will see in Chapter 2.3, Bayes classification rule under Gaussian
assumption motivates a class of linear and quadratic discriminant analysis
(LDA and QDA) methods.

2.2 Logistic regression

Logistic regresion is the simplest machine learning method for binary
classification. It extends from simple linear regression using a logistic
function. Suppose Pr(Y = 1) = π(~X).

g(~xs) = log
π(~xs)

1− π(~xs)
= β0 +

G∑
g=1

βg · xgs + εgs

Logistic regression performs well when sample size S is large, number
of covariates G is small and the assumptions (linear association, inde-
pendence and homoscedasticity) are true in the data. In most genomic
applications, S is small and G is large. The linear association also may
not be true. Nevertheless, one can still perform proper gene filtering
(to be discussed in the next chapter) and PCA eigen-decomposition and
apply logistic regression for binary prediction. It can serve as a quick
first-line machine learning method.

2.3 Linear and quadratic discriminant anal-
ysis

Under Gaussian assumptioins, assume X|Y = k ∼ N(µk,Σk). We have

f(X|Y = k) =
1

(2π)G/2|Σk|1/2
exp

(
−1

2
(X − µk)TΣ−1k (X − µk)

)
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The Bayes classifier (under uniform cost function) becomes

CBayes(X) = arg max
k

f(Y = k|X)

= arg min
k
−2 log f(Y = k) + log |Σk|+ (X − µk)TΣ−1k (X − µk)

Since f(Y = k|X) is continuous in X for a given k, the decision boundary
of selecting among any pair of l and m is

f(Y = l|X) = f(Y = m|X) (think about why?)

Or equivalently,
−2 log f(Y = l) + log |Σl|+ (X − µl)TΣ−1l (X − µl)
= −2 log f(Y = m) + log |Σm|+ (X − µm)TΣ−1m (X − µm).
We can easily see that the discriminant boudary above is of quadratic
form in X.

2.3.1 LDA

If we further assume that the covariance structures are the same for all
classes (i.e. Σl = Σ, 1 ≤ l ≤ K), we can easily show that

CLDA(X) = arg min
k
−2 log f(Y = k) + (X − µk)TΣ−1(X − µk)

= arg min
k
−2 log f(Y = k) + µ′kΣ−1µk − 2µ′kΣ−1X

The decision boundary becomes

− 2 log f(Y = l)− 2µTl Σ−1X + µTl Σ−1µl

= −2 log f(Y = m)− 2µTmΣ−1X + µTmΣ−1µm

2(µl − µm)TΣ−1X − (µl − µm)TΣ−1(µl + µm)

+ 2 (log f(Y = l)− log f(Y = m)) = 0

The decision boundary is a linear hyperplane.
If further assum uniform prior log f(Y = l) = log f(Y = m), the hyper-
plane simplifies to 2(µl − µm)TΣ−1X − (µl − µm)TΣ−1(µl + µm) = 0.

Define transformation X∗ = Σ−1/2X, then µ∗l = Σ−1/2µl, µ
∗
m =

Σ−1/2µm. The hyperplane becomes

2(µ∗l − µ∗m)TX∗ − (µ∗l − µ∗m)T (µ∗l + µ∗m) = 0
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The hyperplane is perpendicular to µ∗l − µ∗m and it passes through the

mid-point of the two class centers
µ∗l +µ

∗
m

2 .

Implementation in real data:

(1) estimate Σ̂ by combining K groups

(2) Σ̂ = UDUT (eigen-decomposition)

Σ̂−1/2 = UD−1/2UT

(3) sphere the data: transform the entire data by Σ̂−1/2

x∗ = Σ̂−1/2x

µ∗k = Σ̂−1/2µk

(4) For a given x, classify x∗ into the closest centroid µ∗k, i.e. C(x) =
arg mink |x∗ − µ∗k|

?? Add a figure to show the concept of transformation and LDA
implementation. (the discrimination is simple by nearest distance in the
transformed space)

We note that the total number of parameters for general QDA is

K · G + K · G(G+1)
2 (the former term is for class means and the latter

term is for covariance matrixes). This is usually intractable especially
when K is high. LDA somewhat reduces the number of parameters to

K ·G+ G(G+1)
2 .

2.3.2 DLDA

In microarray application, G is large. Estimation of general Σ may be
unstable. Strong assumption may be imposed to LDA. One example is to
assume independence between covariates when conditioned on each class.
The covariance matrixes become identical and diagonal.

Σk = Σ =

σ
2
1 0

. . .

0 σ2
G

⇒ Σ−1/2 =

σ
−1 0

. . .

0 σ−1G


⇒

G∑
g=1

(µlg − µmg)
σ2
g

[
xg −

µlg + µmg
2

]
= 0
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CDLDA(X) = arg max
k

G∑
g=1

{
(xg − µkg)2

σ2
g

}
The number of parameters for DLDA is greatly reduced to G ·K +G.

2.3.3 DQDA

Assume Σk =

σ
2
1k 0

. . .

0 σ2
gk

 and f(Y = l) = 1/K (uniform prior),

∀1 ≤ l ≤ K.

The classification rule reduces to:

CDQDA(X) = arg min
k

G∑
g=1

{
(xg − µ2

kg)
2

σ2
kg

+ log σ2
kg

}

The decision boundary becomes:

log |Σl|+ (X − µl)TΣ−1l (X − µl) = log |Σm|+ (X − µm)TΣ−1m (X − µm)

⇒
∑G
g=1

(
1
σ2
gl
− 1

σ2
gm

)
X2
g−2

∑G
g=1

(
µgl

σ2
gl
− µgm

σ2
gm

)
xg+

∑G
g=1

(
µ2
gl

σ2
gl
− µ2

gm

σ2
gm

)
+

2
∑G
g=1

(
log σ2

gl − log σ2
gm

)
= 0, a simple quadratic surface.

The number of parameters for DQDA is G ·K +G ·K = 2 ·G ·K

Example
Figure 2.2 shows a simulated 2D example for LDA, DLDA and QDA. In
the first LDA example, the 100 observatioins are simulated from each of

the two classes: N

((
0
0

)
,

(
1 0.5

0.5 1

))
and N

((
0
4

)
,

(
1 0.5

0.5 1

))
. By

applying “lda” function in R, the LDA classification rule is determined
and the green and blue regions represent the areas that are predicted
to class 1 or class 2. In the second DLDA example, there is zero cor-
relation between the two dimensions in the conditional distributions in

each class: N

((
0
0

)
,

(
1 0
0 1

))
and N

((
0
4

)
,

(
1 0
0 1

))
. It is easily seen

that the classification boundaries generated in both examples are linear.
In the third example, diagonal and distinct covariance matrixes in the
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two classes are used: N

((
0
0

)
,

(
1 0
0 2

))
and N

((
0
4

)
,

(
2 0
0 1

))
. In

this situation, the decision boundary becomes quadratic as suggested by
QDA theorem. Exercise 3 goes through steps to repeat the simulation
and generate the prediction plot.

?? change the blue/green colors to gray scale to show posterior prob-
abilities.
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Figure 2.2: Simulation of three examples for LDA, DLDA and QDA and
their regions of prediction.

2.4 Classification and regression tree

As before, assume data from distribution (Y, X) where Y ∈ {1, 2, . . . ,K}
is the class label and X = (x1, . . . , xG) ∈ RG is the G− dimensional
covariates. The classification and regression tree proposed by Brieman
et al (1984) perform the following tree construction. A feature x chosen
from one of the G dimensions and a cutoff c ∈ R are used to split the
root node into tL and tR such that a specific goodness of split (GOS)
criterion is achieved. The splitting procedure is applied recursively until
some stopping rule is satisfied. Denote by T the tree constructed and
T̃ the set of terminal nodes of T . Below we start from determining the
classification rule when the tree structure T is given (Chapter 2.4.1).
Chapter 2.4.2 introduces goodness of split (GOS) criteria for deciding
the branch splits and construct the tree. Finally, Chapter 2.4.3 describes
pruning procedures to balance cost and complexity of the tree.
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2.4.1 Bayes classification rule when tree structure is
given

For a given terminal node t ∈ T̃ , the Bayes classification rule is

CBayes(X) = arg max
1≤i≤K

P (Y = i|X ∈ t)

= arg max
1≤i≤K

P (Y = i)P (X ∈ t|Y = i)

P (X ∈ t)
= arg max

1≤i≤K
P (Y = i)P (X ∈ t|Y = i)

The misclassification rate of CBayes(X) in the terminal node t is

P (CBayes(X) 6= Y |X ∈ t) = 1− max
1≤i≤K

P (Y = i|X ∈ t)

= 1− max1≤i≤K P (Y = i)P (X ∈ t|Y = i)

P (X ∈ t)

∴ P (CBayes(X) 6= Y ) =
∑
t∈T̃

P (X ∈ t)P (CBayes(X) 6= Y |X ∈ t)

=
∑
t∈T̃

[
P (X ∈ t)− max

1≤i≤K
P (Y = i)P (X ∈ t|Y = i)

]

When K = 2,

P (CBayes(X) 6= Y |X ∈ t) =
min1≤i≤2 P (Y = i)P (X ∈ t|Y = i)

P (X ∈ t)

P (CBayes(X) 6= Y ) =
∑
t∈T̃

min
1≤i≤2

P (Y = i)P (X ∈ t|Y = i)

Theorem: (Brieman, Friedman, Olshen, Stone, 1984)
For any given tree T , CBayes(X) gives the lowest classification error rate

among all possible group assignment in the terminal nodes T̃ .

Example: Consider a given training data set (Ys, Xs), 1 ≤ s ≤ S, a new
test sample Xnew and prior P (Y = i) = pi. If Xnew falls to terminal
node t∗ (i.e. Xnew ∈ t∗), the new test sample should be predicted to

CBayes(Xnew) = arg max
1≤i≤K

pi ·
∑

1≤s≤S χ(Ys = i,Xs ∈ t∗)∑
1≤s≤S χ(Ys = i)

,
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where χ(·) is an indicator function that takes value one if the statement is
true and zero if false. When uniform prior is used, the prediction should
be based on

CBayes(Xnew) = arg max
1≤i≤K

∑
1≤s≤S χ(Ys = i,Xs ∈ t∗)∑

1≤s≤S χ(Ys = i)
,

When the prior P (Y = i) is estimated from the training data, the
prediction reduces to looking for the class with majority vote in node t∗:

CBayes(Xnew) = arg max
1≤i≤K

∑
1≤s≤S

χ(Ys = i,Xs ∈ t∗)

This classification decision is quite frequently used but the readers should
be aware of the underlying assumption. The assumption is often not true;
for example, the disease prevalence is 10% but 50 control and 50 diseases
samples are analyzed as the training data. See the next chapter (on
machine learning performance evaluation) for more detail.

2.4.2 Goodness of split (GOS) criteria

For a given terminal node t ∈ T̃ , an impurity measure can be defined as
M(t) = φ(P (Y = 1|X ∈ t), P (Y = 2|X ∈ t), . . . , P (Y = K|X ∈ t)).
Normally, we require φ(P1, . . . , PK), Pi ≥ 0 and

∑K
i=1 Pi = 1, such that

φ is maximized when Pi = 1/K, 1 ≤ i ≤ K (the most impure case) and
minimized when Pi = 1 and Pj = 0 (j 6= i) (the most pure case). We
also require φ symmetry in (P1, . . . , PK). Two impurity functions are
commonly used:
Gini index: MGini(t) = 1−

∑K
i=1(P (Y = i|X ∈ t))2

Entropy: Mentropy(t) = −
∑K
i=1 P (Y = i|X ∈ t) logP (Y = i|X ∈ t)

Given an impurity function M(t), the GOS criterion is to find the
split tL and tR of node t such that the impurity measure is maximally
decreased:

arg max
tR,tL

M(t)− [P (X ∈ tL|X ∈ t)M(tL) + P (X ∈ tR|X ∈ t)M(tR)]

= arg min
tR,tL

P (X ∈ tL)M(tL) + P (X ∈ tR)M(tR)

P (X ∈ t)

Example For a given node t, suppose seven observations are in-
side the node: covariate X = {1.1, 1.5, 1.7, 1.8, 2.0, 2.5, 3} and class label
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Y = {0, 1, 0, 0, 1, 1, 1}. Denote by G(t) = P (X ∈ tL|X ∈ t)M(tL) +
P (X ∈ tR|X ∈ t)M(tR). It can be shown that the threshold at X = 1.9
gives the best split under either Gini or Entropy impurity function (tL =
((0, 1.1), (1, 1.5), (0, 1.7), (0, 1.8)) and tR = ((1, 2.0), (1, 2.5), (1, 3))). Un-
der Gini index, the minimized score is GGini(1.9) = (4/7) · (1 − 0.252 −
0.752)+(3/7) · (1−12−02) = 0.214. For entropy measure, the minimized
score becomes Gentropy = (4/7) · (−0.25 · log(0.25) − 0.75 · log(0.75)) +
(3/7) · 0 = 0.321. The optimization is a linear search (the same as the
number of observations in a node) and is very fast.

Theorem: Monotone invariant property
Consider Z = G(X) a monotone transformation. Based on either im-
purity function and GOS criterion, the tree TX generated by X and the
tree TZ generated by Z have the same structure. That is, the selected
features are the same and the cutpoints CTZ

= G(CTX
) are equivalent.

Misclassification rate estimates
Recall the following equation for misclassification rate:

R(T ) =
∑
t∈T̃

P (X ∈ t)− max
1≤i≤K

(P (Y = i)P (X ∈ t|y = i))

We may estimate the error rate by empirical distribution

R̂(T ) =
∑
t∈T̃

P̂ (X ∈ t)− max
1≤i≤K

[P (Y = i)P̂ (X ∈ t|y = i)]

where P̂ (X ∈ t) =
∑N

j=1 1{Xj∈t}
N , P̂ (X ∈ t|Y = i) =

∑N
j=1 1{Yj=i & Xi∈t}∑N

j=1 1{Yj=i}
Note that if the same data is used to generate T and to estimate the
error rate, the error rate is overfitting and is often too optimistic. V -fold
cross validation is often used to avoid the bias (see next chapter for more
details).

2.4.3 Minimal cost-complexity pruning

Suppose Tmax is the largest tree developed until all observations in a
terminal node are pure or when the number of observation is smaller
than a pre-defined threshold. The tree Tmax is often overfitted to the
training data and cannot generalize to independent test data (see “gen-
eralizability” concept in the next chapter). Brieman et al (1984) proposed
a backward node recombination strategy called minimal cost-complexity
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pruning. The cost-complexity of T is

Cα(T ) = R̂(T ) + α|T | (2.1)

where R̂(T ) is the error rate of tree T estimated from empirical distri-
bution and |T | is the number of terminal nodes of T . α is a positive
complexity parameter that balance between (overfitted) error and model
complexity. In practice, α is estimated from cross-validation.

How do we perform the optimization? Since the number of nodes
is finite, the optimization can be performed within limited time for a
given α. The following weakest-link cutting method provides an effi-
cient and concise algorithm to find optimal subtrees for any α. The
algorithm sequentially generate a nested sequence of optimal subtrees:
Tmax = T1 ⊂ T2 ⊂ . . . ⊂ Tm, where Tm is the top node containing all
observations. The nested sequence of optimal subtrees is generated as the
following. At iteration i, the tree is created by removing a subtree from
Ti−1. The choice of the subtree s removed from Ti−1 is based on the

cost-complexity measure: s∗ = arg mins∈Ti−1

R(prune(Ti−1,s))−R(Ti−1)
|Ti−1|−|prune(Ti−1,s)| =

R(prune(Ti−1,s))−R(Ti−1)
|s|−1 and Ti = prune(Ti−1, s

∗), where prune(Ti−1, s)

is the tree after pruning s from Ti−1 and |s| is the number of leaves for
subtree s. Note that the optimization searches all possible subtrees in
Ti−1 so it is possible that large subtrees are pruned in the iterations and
normally m << |Tmax|. The following theorem states that the resulting
nested sequence of subtrees provide solutions for all possible α. Note that
this algorithm simplifies the computation in the estimation of α through
cross-validation. The proof of the theorem is left for exercise (Exercise 6)

Theorem Denote by α1 = 0 and αi = R(Ti)−R(Ti−1)
|Ti−1|−|Ti| . It can be shown

that αi−1 < αi, ∀i > 1. Furthermore, for a given α satisfying αi−1 ≤
α < αi, the smallest optimal subtree from equation 2.1 is Ti−1.

Example: ??Add one more example to illustrate the tree pruning and
the weakest-link cutting algorithm.

Example: Figure 2.3 (A)-(C) shows two simulated examples for demon-
strating the CART method. In the first example, 200 points are sim-
ulated in [-6,6]×[-6,6]. When x > 0 and y > 0, the observations be-
long to class II and otherwise class I. This example exactly matches the
searching space behind CART and Figure 2.3(A) shows that CART can
perform almost perfectly. The resulting CART classifier (Figure 2.3 (B))
has 99.8% prediction accuracy on an additional 10,000 simulated obser-
vations. In Figure 2.3 (C)-(F), we simulate an example that fits the
underlysing assumption of LDA. 100 observations of class I are simu-
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lated from N

((
1
−1

)
,

(
2 1
1 2

))
and another 100 observations of class II

are from N

((
−1
1

)
,

(
2 1
1 2

))
. When LDA is applied to the data and

the resulting classifier is used to predict an additional 10,000 simulated
observations, 91.8% accuracy is achieved (Figure 2.3 (C); regions of dif-
ferent predictions are colored by green and blue). Since LDA is the Bayes
classifier in this case, the accuracy is the best we can do among all possi-
ble classification methods. When we use CART, the prediction accuracy
drops to 83.5% and the classification rule is not desirable (Figure 2.3
(D)).

2.5 Bagging and boosting

In this chapter and next chapter, we will introduce several resampling-
based ensemble methods to improve CART. CART is well-known to be
instable in high-dimensional complex systems. These ensemble methods
help provide more stable classifiers and improve the accuracy. The con-
cepts also applies to other instable machine learning methods.

Bootstrapping Bootstrapping was first proposed by Brad Efron in 1979,
motivated from the “jackknife” concept. The term is ironic in nature since
the act of lifting oneself up into the air by one’s bootstrap (and by oneself)
is physically impossible. It was the first intuition when facing resampling
concepts from a classical statistician’s point of view 30 years ago. How
can one gain more information by resampling from the observed data?
You cannot create more information!! However, resampling ideas turn
out to be clever and have become popular in modern statistical science
especially when computing is (to a large degree) no longer a problem.

The fundamental concept of bootstrapping is that the observed (em-
pirical) data are realizations of the underlying unknown populatioin dis-
tribution. The best guess of the underlying cumulative distribution func-

tion (CDF) F (t) is the empirical CDF F̂S(t) =
∑S

s=1 χ(xs≤t)
t , where

x1, · · · , xS are iid observations from F (t). In the bootstrap technique,
the bootstrapped data are sampled with uniform probability with re-
placement in each iteration. The procedure is repeated for B times (e.g.
B=1000). Suppose in iteration b (1 ≤ b ≤ B), the bootstrapped data are

denoted as x
(b)
1 , · · · , x(b)S . Theoretically, x

(b)
1 , · · · , x(b)S are iid generated

from F̂S(t). The empirical distribution function F̂S(t) has nice properties
that it asymptotically converges to F (t) in several ways:
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1. F̂S(t) → F (t) almost surely for every value t. That is, F̂S(t) is
consistent.

2. The central limit theorem shows that the pointwise distribution is
asymptotically normal distributed with

√
S convergence rate:

√
S(F̂S(t)− F (t))→d N (0, F (t)(1− F (t)))

3. The convergence can be stronger in a uniform sense. That is,

supt|F̂S(t)− F (t)| → 0.

With the nice convergence properties of F̂S(t), it is hoped that (under
some condition) inferences based on the bootstrapped samples reflects
corresponding inferences based on the unknown underlying true distri-
bution (at least asymptotically). Such a technique is useful when the
theoretical distribution of the interested statistic is too complicated or
the sample size is insufficient for direct inference (e.g. provide the vari-
ance or confidence interval estimate of a complicated estimator). It can
be shown that when S is large, the number of unique samples in a boot-
strapped data is expected to be (1-1/e)·S=63.2%·S (See Exercise 7).

Bagging Bagging is a resampling type of machine learning ensemble
algorithm. It is often used to improve CART but it theoretically can
apply to any machine learning method. In the bth (1 ≤ b ≤ B) iteration,

bootstrapped data x
(b)
1 , · · · , x(b)S are sampled. Then CART is applied on

the bootstrapped data and the prediction model is generated. After B
iteration, B prediction models are available. For any new sample, the
final prediction is based on majority vote of the B prediction models.
Bagging is often used to improve unstable machine learning methods (e.g
CART). The model averaging approach provides a more stable classifier
and the classification rule also has higher complexity. If bagging is applied
to already stable methods (e.g. K-nearest neighbor), it was shown that
is might slightly decrease the prediction accuracy (Breiman, 1996).

Boosting Boosting is another resampling-based machine learning ensem-
ble method. The method also resample data with S sample size. Differ-
ent from iid sampling from the fixed empirical distribution in Bagging,
boosting’s sampling favors for those objects misclassified in previous clas-
sifications. The most famouse boosting algorithm is AdaBoost (Adaptive
Boosting).

??More details of AdaBoost will be provided in the future.
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2.6 Random forest

Random forest combines two major resampling techniques in the ensem-
ble method: bagging and random selection of features. The algorithm
goes with the following:

1. In the bth iteration, generate a bootstrapped data D(b) from the
original data D. Choose a constant m << G.

2. For each node of the tree, randomly select m variables to decide
the split on that node. The tree is fully grown and not pruned.

3. The iteration is repeated for B times. A total of B decision trees
T (1), T (2), · · · , T (B) are recorded. To predict any new sample xnew,
the decision is made by majority vote from the B tree predictions

arg maxi

∑
1≤b≤B χ(T (b)(xnew)=i)

B .

One merit of random forest is that it does not require prior feature
filtering and it automatically generates an importance score of each fea-
ture that contributes to the classifier. Computation of random forest is
very fast and it improves CART and bagging in almost all cases.

Example: Back to the previous example in CART, Bagging and random
forest are applied to the simulated data. Bagging provides a more com-
plex and more desirable classifier than CART due to its resampling and
majority vote algorithm (Figure 2.3 (E)). The generalization accuracy
improves from 83.5% to 87.9%. Random forest generated a further com-
plex classifier that better match the underlying truth and the accuracy
improves to 88.5%, which is already quite close to the Bayes classifier
accuracy 91.8% (Figure 2.3 (F)).

2.7 Support vector machines

?? To be added later

2.8 Artificial neural network

?? To be added later

Reference:
Christopher J. C. Burges. (1998) A Tutorial on Support Vector Machines
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for Pattern Recognition. Data Mining and Knowledge Discovery. 2: 121
- 167.

Efron, B. (1979). ”Bootstrap methods: Another look at the jack-
knife”. The Annals of Statistics 7 (1): 126

Breiman, Leo (1996). ”Bagging predictors”. Machine Learning 24
(2): 123140.

Exercise:

1. Prove that the Bayes classification rule gives the smallest error
rate when the cost function and prior are both uniformly non-
informative.

2. (a) Draw density plot of conditional distributions for control N(0,
2) and disease N(3,1). (b) Calculate x0, x1 and x2 under the prior
probability and cost function specified in the example. (hint: use
“uniroot” function in R) (c) Draw Figure 2.1 (d) Simulate 1000
normal and 1000 disease patients. Apply the LDA method to verify
your answers of x0, x1 and x2.

3. Follow the following steps to repeat the LDA, DLDA and QDA
examples. (a) Simulate 100 observations from each class and draw
scatter plots of all three examples. (b) Perform LDA and DLDA
and QDA on each example. (c) Generate grid points on the space
and perform prediction using uniform prior (hint: use “predict.lda”
and “predict.qda” function in R). Draw the prediction results by
different colors. (d) From the analysis output, derive the exact
classification boundary function.

4. Use a real data to perform LDA:

(1) Apply the “lda” function from “MASS” package to the data.

(2) Write your own R code to implement LDA and compare the
prediction result and accuracy to (1).

(3) Apply “diagDA” in “sfsmisc” package or “dlda” in “supclust”
package.

(4) Write your own R code to implement DLDA and compare the
prediction result and accuracy to (2).

5. Use a real data to perform CART:

(1) Write your own R code to implement GOS criteria and perform
tree splitting. Use Gini index to construct the maximal tree
until all terminal nodes are pure or less than five objects.
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(2) Use the cost-complexity pruning technique and cross validation
to determine the complexity parameter α and prune the tree.

(3) Perform cross-validation to estimate an unbiased error rate for
CART. (Note: Two loops of cross-validation are needed; One
outer loop for error rate estimate and one inner loop to estimate
α.)

6. Prove the theorem of weakest-link cutting algorithm for tree prun-
ing.

7. Prove that when S →∞, the fraction of unique samples in a boot-
strapped data is expected to be (1 − 1/e) where e is the base of
natural logarithm.
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(B) CART tree
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(C) LDA (Bayes classifier)
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(D) CART
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(E) Bagging (100 times)
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(F) random forest
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Figure 2.3: Simulation examples to demonstrate CART, Bagging and
random forest methods.


